19/3/12

Acero


1.       ¿Qué es una mena?
Mineral metalífero, principalmente el de hierro, tal como se extrae del yacimiento y antes de limpiarlo.
2.       Mencione cuatro menas usadas en la producción del acero.
La mena principal usada en la producción de hierro y acero es la hematita (Fe203), otras menas incluyen la magnetita (Fe304), la siderita (Fe C 03) y la limonita (FeO (OH)- nH2O).
Las menas de hierro contienen de un 50 a un 70% de hierro, dependiendo de su concentración; la hematita contiene casi 70% de hierro. Además, hoy se usa ampliamente la chatarra como materia prima para la fabricación de hierro y acero.
3.       ¿Qué es coque?
3.El coque es un combustible de alto carbono, producido por el calentamiento de carbón bituminoso en una atmósfera con bajo contenido de oxígeno durante varias horas, seguido de una aspersión de agua en torres especiales de enfriamiento. La coquificación del carbón mineral deja, como subproducto, gas de alto poder calorífico, que es utilizado como combustible en los diversos procesos subsiguientes.
4.- ¿Qué funciones desempeña el coque el proceso de producción del acero?
El coque desempeña dos funciones en el proceso de reducción:
1) Es un combustible que proporciona calor para la reacción química y
2) produce monóxido de carbono (CO) para reducir las menas de hierro
5.- ¿Para qué se emplea la piedra caliza  en la  producción del acero?
 La piedra caliza es una roca que contiene altas proporciones de carbonato de calcio (Ca CO 3). Esta piedra caliza se usa en el proceso como un fundente que reacciona con las impurezas presentes y las remueve del hierro fundido como escoria.
6. ¿Qué  es  un  alto        horno   y aproximadamente      que        dimensiones     tiene?
 Un alto horno es virtualmente una planta química que reduce continuamente el hierro del mineral. Químicamente desprende el oxígeno del óxido de hierro existente en el mineral para liberar el hierro. Está formado por un recipiente cilíndrico de acero forrado con un material no metálico y resistente al calor, como ladrillos refractarios y placas refrigerantes. El diámetro del recipiente cilíndrico de 9 a 15 m (30 a 50 pies) disminuye hacia arriba y hacia abajo,  y es máximo en un punto situado aproximadamente a una cuarta parte de su altura total de 40 m (125 pies)
7.- ¿Qué es el arrabio?
 El hierro fundido de primera fusión
8.- ¿Qué significa “Afino del acero”?
El acero se obtiene a partir de dos materias primas fundamentales: el arrabio obtenido en horno alto y la chatarra.
La fabricación del acero en síntesis se realiza eliminando las impurezas del arrabio y añadiendo las cantidades convencionales de Mg, Si y de los distintos elementos de aleación.
Los métodos más importantes de fabricación de aceros son los siguientes:
Ø Métodos antiguos:
• Hornos de Reverbero (Siemens-Martin)
• Convertidor Bessemer.
Ø Métodos modernos:
• Convertidor L.D.
• Hornos eléctricos de arco H.E.A.
• Convertidor A.O.R.
• Horno de inducción.
Ø Métodos actuales:
• Metalurgia secundaria en cuchara (La metalurgia secundaria se lleva a cabo en equipos diversos, tales como cucharas, convertidores u hornos especiales)
9.- Describa brevemente cómo  funciona el método de afino de Crisol Abierto.
Cualquier proceso de producción de acero a partir de arrabio consiste en quemar el exceso de carbono y otras impurezas presentes en el hierro. Una dificultas para la fabricación del acero es su elevado punto de fusión, 1400ºC, que impide utilizar combustibles y hornos convencionales. Para superar la dificultad se desarrolló el horno a crisol abierto, que funciona a altas temperaturas gracias al precalentado regenerativo del combustible gaseoso y el aire empleados para la combustión. En el precalentamiento regenerativo los gases que escapan del horno se hacen pasar por una serie de cámaras llenas de ladrillos, a los que ceden la mayor parte de su calor. A continuación se invierte el flujo a través del horno, y el combustible y el aire pasan a través de las cámaras y son calentados por los ladrillos, con este método, los hornos de crisol abierto alcanzan  las temperaturas de hasta 1.650ºC. El horno propiamente dicho suele ser un crisol de ladrillo plano y rectangular de unos 6×10 m, con un techo de unos 2,5 m de altura. Una serie de puertas da a una planta de trabajo situada delante del crisol. Todo el crisol y la planta de trabajo están situados a una altura determinada por encima del suelo, y el espacio situado bajo el crisol lo ocupan las cámaras de regeneración de calor del horno. Un horno del tamaño indicado produce unas 100 toneladas de acero cada 11 horas. El horno se carga con una mezcla de arrabio (fundido o frío), chatarra de acero y mineral de hierro, que proporciona oxígeno adicional. Se añade caliza como fundente y fluorita para hacer que la escoria sea mas fluida. Las proporciones de la carga varían mucho, pero una carga típica podría consistir en 60.000 Kg de chatarra de acero, 11.000 Kg de arrabio frío, 45.000 Kg de arrabio fundido, 12.000 Kg de caliza, 1.000 Kg de mineral de hierro y 200 Kg de fluorita. Una vez cargado el horno, se enciende, y las llamas oscilan de un lado a otro del crisol a medida que el operario invierte su dirección para regenerar el calor. Desde el punto de vista químico la acción del horno de crisol abierto consiste en reducir por oxidación el contenido de carbono de la carga y eliminar impurezas como silicio, fósforo, manganeso y azufre, que se combinan con la caliza y forman la escoria. Estas reacciones tienen lugar mientras el metal del horno se encuentra a la temperatura de fusión, y el horno se mantiene entre 1.550 y 1.650ºC durante varias horas hasta que el metal fundido tenga el contenido de carbono deseado. Un operario experto puede juzgar el contenido de carbono del metal a partir de su aspecto, pero por lo general se prueba la fundición extrayendo una pequeña cantidad del metal del horno, enfriándola y sometiéndola a examen físico o análisis químico. Cuando el contenido en carbono de la fundición alcanza el nivel deseado, se sangra el horno a través de un orificio situado en la parte trasera. El acero fundido fluye por un canal corto hasta una gran cuchara situada a ras del suelo, por debajo del horno. Desde la cuchara se vierte el acero en moldes de hierro colado para formar lingotes, que suelen tener una sección cuadrada de unos 50 cm de lado, y una longitud de 1,5 m. Estos lingotes, la materia prima para todas las formas de fabricación de acero, pesan algo menos de 3 toneladas. Recientemente se han puesto en práctica métodos  para procesar el acero en forma continua sin tener que pasar por el proceso de fabricación de lingotes.

10.- Describa     brevemente como funciona el método de afino denominado Convertidor Bessemer.
El proceso más antiguo para fabricar acero en grandes cantidades es el proceso Bessemer, que empleaba un horno de gran altura en forma de pera, denominado convertidor de Bessemer, que podía inclinarse es sentido lateral para la carga y el vertido. Al hacer pasar grandes cantidades de aire a través del metal fundido, el oxígeno del aire se combinaba químicamente con las impurezas y las eliminaba. En el proceso básico de oxígeno, el acero también se refina en un horno en forma de pera que se puede inclinar en sentido lateral. Sin embargo, el aire se sustituye por un chorro de oxígeno casi puro a alta presión. Cuando el horno se ha cargado y colocado en posición vertical, se hace descender en su interior una lanza de oxígeno. La punta de la lanza, refrigerada por agua, suele estar situada a unos 2 m por encima de la carga, aunque esta distancia se puede variar según interese. A continuación se inyectan en el horno miles de metros cúbicos de oxígeno a velocidades supersónicas. El oxígeno se combina con el carbono y otros elementos no deseados e inicia una reacción de agitación que quema con rapidez las impurezas del arrabio y lo transforma en acero. El proceso de refinado tarda 50 minutos o menos, y es posible fabricar unas 275 toneladas de acero en una hora.
11.- ¿Cómo        funciona             un          horno   de          arco       eléctrico?
En algunos hornos el calor para fundir y refinar el acero procede de la electricidad y no de la combustión de gas. Como las condiciones de refinado de estos hornos se pueden regular más efectivamente que las de los hornos de crisol abierto o  los hornos básicos de oxígeno, los hornos eléctricos son sobre todo útiles para producir acero inoxidable y aceros aleados que deben ser fabricados según unas especificaciones muy exigentes. El refinado se produce en una cámara hermética, donde la temperatura y otras condiciones se controlan de forma rigurosa mediante dispositivos automáticos. En las primeras fases de este proceso de refinado se inyecta oxígeno de alta pureza a través de una lanza, lo que aumenta la temperatura del horno y disminuye el tiempo necesario para producir el acero. La cantidad de oxígeno que entra en el horno puede regularse con precisión en todo momento, lo que evita reacciones de oxidación no deseadas.
En la mayoría de los casos, la carga está formada casi exclusivamente por  material de chatarra. Antes de poder utilizarla, la chatarra debe ser analizada y clasificada, porque su contenido en aleaciones afecta a la composición del metal refinado. También se añaden otros materiales, como pequeñas cantidades de mineral de hierro y cal seca, para contribuir a eliminar el carbono y otras impurezas. Los elementos adicionales para la aleación se introducen con la carga o después, cuando se vierte a la cuchara el acero refinado. Una vez cargado el horno se hacen descender unos electrodos hasta la superficie del metal. La corriente 6 eléctrica fluye por uno de los electrodos, forma un arco eléctrico hasta la carga metálica, recorre el metal y  vuelve a formar un arco hasta el siguiente electrodo. La resistencia del metal al flujo de corriente genera calor que, junto con el producido por el arco eléctrico, funde el metal con rapidez. Hay otros tipos de horno eléctrico donde se emplea una espiral para generar calor
12.- ¿Qué ventajas tiene la desgasificación de                un          proceso               de          afino?
A.) Tratamiento de desgasificación: El acero contiene elementos perjudiciales que deben eliminarse. Entre éstos están los gases disueltos durante el proceso de fabricación; Hidrógeno; Oxígeno; Nitrógeno. Para reducir el tamaño al máximo del contenido de estos gases, en especial el Hidrógeno, se somete al acero líquido al vacío, según distintos procesos, que pueden agruparse en tres técnicas principales:
A.1.) Desgasificación del chorro de colada: Consiste en situar el recipiente receptor del acero líquido (cuchara o lingotera) en una cámara de vacío, sobre la que se ajusta la cuchara que contiene el acero líquido. El chorro de acero, por efecto del vacío, se fracciona en gotas que favorecen la eliminación de los gases.
A.2.) Desgasificación del acero en la cuchara: La cuchara se sitúa previamente en una cámara de vacío. Para facilitar la desgasificación, el acero se remueve por una corriente de gas inerte (Argón) o electromagnéticamente.
A.3.) Desgasificación por recirculación: Consiste en hacer circular repetidas veces el acero por un recipiente que actúa de cámara de vacío.
13.- ¿Porqué y para qué se usa el gas Argón en  los procesos de afino?
B.) Tratamiento de afino de los aceros inoxidables: La chatarra se funde en un horno eléctrico de arco de inducción. Después de colada la cuchara con el acero fundido en la cámara y hecho el vacío, se inyecta oxígeno con una lanza situada en la parte superior, que elimina el carbono con  un mínimo de oxidación metálica. Al mismo tiempo, se pasa Argón a través de un tapón poroso situado en el fondo de la cuchara, para homogeneizar la masa del acero líquido
14.- ¿Qué            es           el            barboteo            en          los          procesos             de          afino?
C.)  Tratamiento de homogeneización por barboteo: Consiste en la agitación del baño  mediante la inyección de un gas inerte, generalmente Argón, a través del fondo de la cuchara o por una lanza.
15.- ¿Cómo        se           usa         el            vacío     en          los          procesos             de          afino?
E.)  Desoxidación del acero por el carbono en el vacío o (VCD): Al ser tratado el acero en el vacío conteniendo carbono y oxígeno disueltos estos elementos reaccionan entre sí, dando origen a CO, de esta forma se elimina el oxígeno del acero sin dejar residuos sólidos (inclusiones no metálicas). El CO (gas) es eliminado del sistema (vacío), siguiendo la reacción hasta prácticamente la eliminación total del oxígeno. La deshidrogenación también es más elevada, al ser ayudada por el desprendimiento de burbujas de CO, que facilitan el arrastre del hidrógeno.
16.- ¿Qué función tienen los alambres                de aluminio y calcio en los procesos de afino?
G.) Adición de Aluminio y Calcio por medio de alambre o de proyectiles: El alambre se introduce a gran velocidad en el acero mediante un mecanismo especial. Al mismo tiempo se remueve el acero de la cuchara inyectando Argón. En el caso de adición por proyección, los proyectiles se lanzan a una velocidad controlada para que almacenen el fondo de la cuchara, por medio de un aparato que funciona como una metralleta de aire comprimido.
17.- ¿Qué            es           la            escoria
Impurezas como silicio, fósforo, manganeso y azufre, que se combinan con la caliza y forman la escoria.
18.- ¿Según el tipo de refractario cómo se pueden clasificar    los métodos de fabricación del acero?
Desde el punto de vista químico−metalúrgico, todos los procesos de fabricación de acero se pueden clasificar en ácidos y básicos (según el refractario y composición de la escoria utilizada ), y cada proceso tiene funciones específicas según el tipo de afino que puede efectuar. Los procesos ácidos utilizan refractarios de sílice, y por las condiciones de trabajo del proceso hay que poder formar escorias que se saturen de sílice. Los procesos ácidos pueden utilizarse para eliminar carbono, manganeso y silicio; no son aptos para disminuir el contenido en fósforo y azufre,  y por esto requieren el consumo de primeras materias seleccionadas, cuyo contenido en fósforo y azufre cumple las especificaciones del acero final que se desea obtener. Los procesos básicos utilizan refractarios de magnesita y dolomía en las partes del horno que están en contacto con la escoria fundida y el metal. La escoria que se forma es de bajo contenido de sílice compensada con la cantidad necesaria de cal. El proceso básico elimina, de manera tan eficaz como el proceso ácido, el carbono, manganeso y silicio, pero además eliminan el fósforo y apreciables contenidos de azufre. De aquí las grandes ventajas del proceso básico, por su gran flexibilidad par consumir diversas materias primas que contengan fósforo y azufre, y por los tipos y calidades de acero que con él se pueden obtener. Desde el punto de vista tecnológico existen tres tipos fundamentales de procesos:
1) Por soplado, en el cual todo el calor procede del calor inicial de los materiales de carga, principalmente en estado de fusión.
2) Con horno de solera abierta, en el cual la mayor parte del calor proviene de la combustión del gas o aceite pesado utilizado como combustible; el éxito de este proceso se basa en los recuperadores de calor para calentar el aire y así alcanzar las altas temperaturas eficaces para la fusión de la carga del horno.
3) Eléctrico, en el cual la fuente de calor más importante procede de la energía eléctrica ( arco, resistencia o ambos ); este calor puede obtenerse en presencia o ausencia de oxígeno; por ello los hornos eléctricos pueden trabajar en atmósferas no oxidantes o neutras y también en vacío, condición preferida cuando se utilizan aleaciones que contienen proporciones importantes de elementos oxidables
19.- ¿En los procesos ácidos de fabricación del                acero principalmente   que escorias se               eliminan?
Los procesos ácidos utilizan refractarios de sílice, y por las condiciones de trabajo del proceso hay que poder formar escorias que se saturen de sílice. Los procesos ácidos pueden utilizarse para eliminar carbono, manganeso y silicio; no son aptos para disminuir el contenido en fósforo y azufre,  y por esto requieren el consumo de primeras materias seleccionadas, cuyo contenido en fósforo y azufre cumple las especificaciones del acero final que se desea obtener. Los procesos básicos utilizan refractarios de magnesita y dolomía en las partes del horno que están en contacto con la escoria fundida y el metal
20.- ¿Según el punto de vista tecnológico cómo se pueden clasificar   los métodos de              fabricación         del         acero?
Acero Bof, Horno Eléctrico y Convertidores BessemerThomas
21.- Describa     el            proceso               de          fabricación         del         acero    denominado     Bessemer           ácido.
El proceso Bessemer ácido ha sido el primero utilizado y el más sencillo. Desde su inicio permite obtener en una sola operación, partiendo de hierro líquido, coladas de 10−25 tm al ritmo de 1 tm/ min. Por ser ácido, no defosfora ni desulfura y debe utilizar hierro líquido de análisis adecuado. La gran abundancia de mineral de hierro rico en fósforo, que al ser tratado en horno alto pasan gran parte al hierro líquido, provoca el desarrollo de procesos que pueden defosforar, y ha sido causa de que los procesos básicos se empleen en Europa mucho más que el Bessemer ácido, limitado éste a utilizar hierro bajo en fósforo, mucho más escaso. La operación se realiza en el convertidor, cuba de acero revestida de refractario, con toberas en su fondo y abierta en su parte superior, montada sobre apoyo con mecanismo basculante. La carga de hierro líquido se realiza con el convertidor en posición horizontal, lo que deja abiertas las toberas. Se insufla el aire necesario a través de uno de los soportes huecos a la caja de viento, que lo distribuye a través de las toberas a una presión de 2 kg / cm2.
Se inicia el soplado al mismo tiempo que se pone el convertidor vertical; el aire a presión pasa a través del hierro líquido, introduciéndose así el oxígeno necesario para el afino.
El silicio contenido en el hierro líquido es el factor termoquímico más importante para regular y obtener la temperatura necesaria. La llama expulsada por la boca del convertidor cambia de color y luminosidad, lo que permite juzgar el desarrollo del afino e interrumpir el soplado en el momento final adecuado; entonces se hace bascular el convertidor y se cuela el acero líquido en una cuchara de transporte. El revestimiento ácido de este 16 tipo de convertidores proporciona el exceso de sílice indispensable para formar escoria, además del silicio que contiene el hierro líquido.
En el caso del convertidor básico, llamado proceso Thomas, el revestimiento es de magnesita o dolomía calcinada y alquitrán. Por la acción fuertemente oxidante del soplado se elimina primero el carbono y después se oxida el fósforo, que actúa de importante elemento termógeno. La cal necesaria se añade con la carga; se funde durante el soplado y se combina con el fósforo oxidado, formando la escoria Thomas, utilizada como fertilizante. Este proceso ha sido un factor muy importante del desarrollo industrial alcanzado en Europa a fines del siglo pasado. Se controla como el Bessemer por el aspecto de la llama. El tiempo necesario del soplado es sólo de 15 min, por lo que el éxito del proceso depende de la pericia del operario. Tan corto tiempo no permite efectuar control por análisis de muestras
22.- Describa     el            proceso de         fabricación         del         acero    denominado     BOF.
Convertidores (BOF) - Soplado con Oxígeno El Horno de Oxígeno Básico es un elemento muy eficaz para convertir los lingotes de hierro en acero inyectando oxígeno. Carburos Metálicos puede suministrar el gas, los sistemas de control de procesos y el caudal así como el know-how técnico (por ejemplo, en la colocación de lanzas).
Convertidores (BOF) - Precalentamiento de la ChatarraSe han desarrollado equipos de control y quemadores para precalentar de forma eficaz la chatarra férrea mediante quemadores de oxi-combustible no refrigerados por agua. Se suelen conseguir ahorros de combustible del 70% y reducciones del 50% en tiempos de calentamiento.
Convertidores (BOF) - Salpicadura de Escoria Mediante la inyección de nitrógeno en la zona inferior del horno a través de la misma lanza de oxígeno se consigue una capa de protecicón de escoria fundida en la pared del refractario reduciendo el “gunning consumption” y alargando la campaña.
Convertidores (BOF) - Agitación Inferior El metal fundido se agita mediante una inyección de gas de alta presión con el fin de incrementar la producción de acero, la recuperación de los metales de aleación y alargar la duración de la campaña.
23.- Mencione  los cinco grupos en los cuales se puede clasificar el acero.
1.       Aceros Al Carbono
2.       Aceros Aleados
3.       Aceros De Baja Aleación Ultra Resistentes
4.       Aceros Inoxidables
5.       Aceros De Herramienta
24.- ¿En               tus         palabras              que        es           el            acero?
Aleación de hierro y carbono, en diferentes proporciones, que, según su tratamiento, adquiere especial elasticidad, dureza o resistencia.
El acero es uno de los metales más resistentes, versátiles, adaptables y ampliamente utilizado. Al contener hierro, posee una característica única, su magnetismo, lo que lo hace ser uno de los materiales más fáciles de reciclar

No hay comentarios:

Publicar un comentario